We’re seeing more and more about how algorithms and machine learning are being applied behind the scenes in our digital lives. These techniques are being applied to tools used in the HR industry to the point that they are becoming old hat. So what’s next? Machine discovery.

No one is really talking about “machine discovery” at this point except for this guy; Raul Valdes-Perez. We’re excited he’s covering the topic because it highlights an emerging field of data science that has the potential to be more powerful and user friendly than anything that’s out there. In a November 2015 article on Tech Crunch called “Machine Learning Versus Machine Discovery” Mr. Valdes-Perez breaks down this difference. Being that our core data science initiatives at Vettd are based on these principals, an alternative point of view can help better articulate what it’s all about and here are some highlights.

“Machine learning is hot. Where it applies, it heatedly enables data-rich and knowledge-lean automation of valuable tasks of perception, classification and numeric prediction. Its sibling, machine discovery, deals with uncovering new knowledge that enlightens or guides human beings…

Armed with these key ideas, let’s consider which is the better design — discovery or learning — for a proposed app: A guest-introducer for large parties or events. A good party host identifies areas of common interest among guests and endeavors to introduce them, explaining what they have in common in order to stimulate conversation. It’s a hard task and hosts are busy. Given an attendance list, could making good introductions be automated?

An AI or discovery approach proceeds like this: Study, or figure out, what makes a good introduction. What determines quality? Is there scope for innovative introductions that serve the core purpose? What data sources enable these automated inferences (e.g., LinkedIn profiles or other biographical sources)?…

Discovery requires studying the task logic (i.e., the space of possible solutions), the knowledge that prioritizes good paths within that space and algorithm design to make it all practical. There is scope for innovation in the space being searched and the heuristics used. But the most innovations may come from novel, creative outputs on specific inputs, because automation enables exploring a much larger space of possibilities than people can practically consider…

Machine discovery will address specific tasks that require knowledge and training when done humanly. Discovery tends to be hand-crafted, more elaborate and rarer.”

Thanks for the clarification Raul!

We’ll leave you with our take on the comparison between machine learning and machine discovery. Here’s what a conversation between a recruiter and each technique might look like.

More Posts

You Might Also Like

Artificial Intelligence
The Transparency Problem with AI
The use of Artificial intelligence (AI) in important decision-making areas continues to grow and includes such important decisions as: loan-worthiness, emergency response, medical diagnosis, job candidate selection, parole determination, criminal punishment, and educator performance. But, a critical question keeps coming up in these areas, how are the decisions being made?
Jul 22, 2019
Jeff Brennan
Artificial Intelligence
Unsupervised vs Supervised AI: Not all AI is created equal
But how can you figure out which functions within your business can actually be transformed by AI? What are the quality limitations? How can you evaluate which business service companies are using AI effectively while others could be selling hyped up linear algebra? The best way to know if an AI product is right for your business is by asking the right questions.
Jun 6, 2019
Vettd Team
Talent
AI for HR is Here. Vettd Can help.
Any job seeker or talent acquisition professional will tell you about the challenges in the digital candidate experience. On one side, exasperated candidates blanket job websites with resumes and cover letters.
May 28, 2019
Vettd Team
Artificial Intelligence
Truth #2: Companies need to own their AI for HR
No matter what industry you’re in, nearly every organization is becoming an information technology company due to the massive amount of data being gathered about their customers and workforce.
Dec 19, 2018
Andrew Buhrmann
Talent
Avoiding your enterprise expiration date
In the era of digital transformation, having the right people in the right places will make or break your organization. If you can bring together data about your people and your business and map talent to the needs of your organization, you’ll better understand how to stay ahead of your competition.
Dec 5, 2018
Andrew Buhrmann
Talent
The Future of AI for HR in Five Truths
Vettd, the leader in deep learning for Human Capital Management, launches new eBook for enterprise HR leaders
Nov 13, 2018
Vettd Team
Explore ALl Posts